В

Pages: 2

Pag No:	Nama

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth semester B.Tech degree examinations (S) September 2020

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

1 a) State and explain Ampere's law and Coulomb's law

- (8)
- b) Consider a region between two electrodes separated by a distance, d, having a uniform charge density of ρ_v . Voltage on one electrode is V_0 and other electrode is V_0 . Find the expression of electric field in terms of V_0 , ρ_v and V_0 .

2 a) In a lossy dielectric medium , characteristic impedance of the medium is 173 + (7) j 100 Ω , Expression of Magnetic field of a plane wave is given by

 $\overline{H} = 10~e^{-\alpha x} \, cos(\omega\,t - 0.5x)~\hat{a}_z\,A/m$. Find

- i. Direction of propagation
- ii. Loss tangent
- iii. Attenuation constant
- iv. Phase constant
- v. Skin depth
- b) State and explain Skin Depth . For a good conductor, prove that $\alpha = \beta$, where, α (8) is the attenuation constant and β is the phase constant.
- 3 a) Derive continuity equation from fundamental laws.

(8)

b) Explain boundary conditions for Electric field and Magnetic field.

(7)

PART B

Answer any two full questions, each carries 15 marks.

4 a) Derive the expression for reflection coefficient for a wave of parallel (8)

00000EC303121902

		polarization, travelling from one medium to another at oblique incidence.		
	b)	Explain wave polarization and different polarisation with example.		
5	a)	A transmission line of length 0.2 λ and characteristic impedance 100Ω is	(8)	
		terminated with a load impedance of 50+200j . Find input impedance, reflection		
		coefficient at load end, reflection coefficient at the input end and VSWR.		
	b)	b) Explain lossless transmission line and distortion less transmission line		
6	a) Derive the expression for Brewster angle for parallel polarised wave.		(7)	
	b)	Derive the expression for propagation constant of transmission line.	(8)	
		PART C		
7	۵)	Answer any two full questions, each carries 20 marks.	(9)	
7	a)	Derive the expression for r circles and x circles in Smith chart.	(8) (8)	
	b)	,		
		i. Reflection coefficient at load		
		ii. VSWRiii. Load admittance		
		iv. Input impedance at 0.2λ from the load		
		 v. Reflection coefficient at 0.2 λ from the load 		
	c)	Briefly explain importance of quarter wave transformer.	(4)	
8	a)	Explain the propagation of electromagnetic wave in a rectangular waveguide	(10)	
o	a) b)	For TE ₁₀ mode of propagation in a rectangular wave guide, with length 8cm and	(10)	
	U)	6 cm respectively, find the following when frequency of operation is 6 GHz.		
		i. Cut off frequency		
		ii. Cut off wavelength		
		iii. Guide wavelength		
		iv. Phase constant		
		v. Phase velocity		
		vi. Group velocity		
		vii. Wave impedance		
9	a)	Derive the expression all the Electric and magnetic field components for	(10)	
_	,	Transverse Magnetic Modes.	(10)	
	b)	Explain single stub tuning method using Analytical method.	(10)	
	,	****	(- /	

Ktu **Q** bank