В Pages: 2 | Pag No: | Nama | |---------|------| ## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Fifth semester B.Tech degree examinations (S) September 2020 ## **Course Code: EC303** ## Course Name: APPLIED ELECTROMAGNETIC THEORY Max. Marks: 100 Duration: 3 Hours #### PART A Answer any two full questions, each carries 15 marks. Marks 1 a) State and explain Ampere's law and Coulomb's law - (8) - b) Consider a region between two electrodes separated by a distance, d, having a uniform charge density of ρ_v . Voltage on one electrode is V_0 and other electrode is V_0 . Find the expression of electric field in terms of V_0 , ρ_v and V_0 . 2 a) In a lossy dielectric medium , characteristic impedance of the medium is 173 + (7) j 100 Ω , Expression of Magnetic field of a plane wave is given by $\overline{H} = 10~e^{-\alpha x} \, cos(\omega\,t - 0.5x)~\hat{a}_z\,A/m$. Find - i. Direction of propagation - ii. Loss tangent - iii. Attenuation constant - iv. Phase constant - v. Skin depth - b) State and explain Skin Depth . For a good conductor, prove that $\alpha = \beta$, where, α (8) is the attenuation constant and β is the phase constant. - 3 a) Derive continuity equation from fundamental laws. (8) b) Explain boundary conditions for Electric field and Magnetic field. (7) ### PART B Answer any two full questions, each carries 15 marks. 4 a) Derive the expression for reflection coefficient for a wave of parallel (8) # 00000EC303121902 | | | polarization, travelling from one medium to another at oblique incidence. | | | |---|--|---|------------|--| | | b) | Explain wave polarization and different polarisation with example. | | | | 5 | a) | A transmission line of length 0.2 λ and characteristic impedance 100Ω is | (8) | | | | | terminated with a load impedance of 50+200j . Find input impedance, reflection | | | | | | coefficient at load end, reflection coefficient at the input end and VSWR. | | | | | b) | b) Explain lossless transmission line and distortion less transmission line | | | | 6 | a) Derive the expression for Brewster angle for parallel polarised wave. | | (7) | | | | b) | Derive the expression for propagation constant of transmission line. | (8) | | | | | PART C | | | | 7 | ۵) | Answer any two full questions, each carries 20 marks. | (9) | | | 7 | a) | Derive the expression for r circles and x circles in Smith chart. | (8)
(8) | | | | b) | , | | | | | | i. Reflection coefficient at load | | | | | | | | | | | | ii. VSWRiii. Load admittance | | | | | | iv. Input impedance at 0.2λ from the load | | | | | | v. Reflection coefficient at 0.2 λ from the load | | | | | c) | Briefly explain importance of quarter wave transformer. | (4) | | | 8 | a) | Explain the propagation of electromagnetic wave in a rectangular waveguide | (10) | | | o | a)
b) | For TE ₁₀ mode of propagation in a rectangular wave guide, with length 8cm and | (10) | | | | U) | 6 cm respectively, find the following when frequency of operation is 6 GHz. | | | | | | i. Cut off frequency | | | | | | ii. Cut off wavelength | | | | | | iii. Guide wavelength | | | | | | iv. Phase constant | | | | | | v. Phase velocity | | | | | | vi. Group velocity | | | | | | vii. Wave impedance | | | | 9 | a) | Derive the expression all the Electric and magnetic field components for | (10) | | | _ | , | Transverse Magnetic Modes. | (10) | | | | b) | Explain single stub tuning method using Analytical method. | (10) | | | | , | **** | (- / | | Ktu **Q** bank